
 UCSB RMP
OPTIMIZING SELF-DRIVING PIZZA CARS AUG 2019

The Self-Driving Pizza Car: Optimizing Control

Algorithms for Autonomous Delivery Systems

Nischal Sinha,1 Bryce Ferguson2

1Great Oak High School, 32555 Deer Hollow Way, Temecula, CA 92592
2Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106

Email: nish.d.sinha@gmail.com

Recent years have seen an increase in attention to autonomous vehicles, especially in the field of autonomous

delivery using self-driving trucks and cars. While the creation of such autonomous vehicles has become fairly

straight-forward, a far less explored question is what constitutes an ideal algorithm to determine delivery

routes. One unique case of such delivery systems is that of self-driving pizza cars (SDPCs), wherein a vehicle
must consider incoming orders, prices, wait times, and other factors, all while baking orders as the car travels.

In this paper we pose a computer model to simulate an SDPC on a network of locations. We then develop

both greedy and temporal difference (TD) control algorithms, prioritizing various properties related to

customer experience and efficiency. Finally, we compare the delivery efficiencies of each algorithm.

Ultimately, TD algorithms consistently outperformed their greedy counterparts, while there was no

conclusive control which applied optimally over all metrics.

Keywords: Autonomous delivery, Control algorithms, Reinforcement learning, Temporal difference learning

I. INTRODUCTION

Autonomous vehicles have become an increasingly

popular and feasible solution to modernizing public

transportation networks and delivery systems. One unique

and burgeoning application of this technology is in pizza

delivery – a $9.8 billion-dollar industry in the US in 2018

[1]. Established companies such as Domino’s and Pizza Hut

have partnered with automakers (Ford and Toyota,

respectively) to automate their delivery infrastructures [2],

following the lead of innovative startups such as Mountain

View based Zume Pizza [3].

This problem considers a novel idea for a self-driving
pizza car (SDPC) which functions much like a self-driving

taxi system, but with a specialized twist. The SDPC operates

fully autonomously to deliver pizzas from location to

location. However, it differentiates itself from other

autonomous delivery systems in that it also bakes pizzas

fully in-car as it drives. Such a device would be

advantageous to pizza delivery companies as it eliminates

the need for a human driver while also reducing wait times

per order, as the SDPC would not have to return to the brick-

and-mortar store to pick up new deliveries.

 With this in mind, the SDPC behaves under a number of
operating constraints: at any given increment of time, it first

receives a series of random orders, then deliberates the

optimal path to satisfy them, and finally bakes a pizza as it

drives to the order location, one pizza at a time. This final

constraint adds an additional time factor which the control

algorithm must consider when deciding its optimal path (one

which we also see in industries like that of perishable goods

and autonomous taxis).

Ultimately, creating an effective decision-making

algorithm for such an SDPC has proven difficult. The current

state of the literature on routing problems leans heavily

towards greedy control algorithms, often leveraging vast

repositories of data to calculate trends for optimal car
behavior [4, 5]. However, in the case of a fleet of SDPCs (or

various other autonomous delivery networks), there is a

noted lack of data available due to the fact that the

technology has never been implemented before. In light of

this, the need for a more dynamic control algorithm becomes

apparent [6].

Temporal difference (TD) learning is an alternative

approach to control algorithms for systems wherein an object

makes decisions in accordance with an approximated cost

function generated from the current and all past states of the

system [7]. This is a heavily researched field; in the past it
has been applied to self-driving cars from the perspective of

decision making for driving techniques [8, 9]. Additionally,

[4] provides an exploration of how RL can be used to manage

off-duty autonomous mobility on demand (AMoD) cars to

navigate to optimal pickup locations. Currently, however,

there is a marked lack of research into the applications of TD

learning in the on-duty elements of an autonomous delivery

system, where the algorithm would decide which in which

order to satisfy a number of randomly generated orders.

Our solution to the problems presented above is to use RL

to optimize the SDPC’s behavior for a network with

stochastically updating orders. By using temporal

difference-lambda (TD(λ)) learning to dynamically adjust

the algorithm, the SDPC optimizes its efficiency for the

particular network, increasing its performance over time by

adjusting its control algorithm with each increment.
We begin by modelling a single SDPC in a network with

stochastic orders and measuring the delivery efficiency of

the model while using a series of greedy control algorithms.

This serves as a baseline from which we develop TD control

 UCSB RMP
OPTIMIZING SELF-DRIVING PIZZA CARS AUG 2019

algorithms for the same variety of metrics and test their

efficiencies before comparing the greedy and TD results.

This allows us to investigate approaches to SDPC routing

that considerably improve the delivery efficiency of the

system over the course of an episode when compared to
greedy approaches.

II. PROBLEM MODEL

A. Graph Framework and Stochastic Orders

We begin by developing a model which includes the

SDPC and n delivery locations as a framework for our

various control algorithms. Here, we represent locations as

nodes on an undirected graph H (see FIG. 1). The edges of

H represent roads linking two different locations, with
weights corresponding to a fixed travel time, or distance,

between the locations. The SDPC is denoted on the graph by

an additional node on H, with edges that continually update

as the system changes states. This process is described in

more depth in section II, subsection C.

At any given point in time, node i receives an order with

probability pi provided there is not an order already pending

there. Such an order has three properties: bake time b and

price c, where b and c are random variables that do not

change until the order has been satisfied, and a continually

updating wait time w, which begins at 0 and increases

incrementally with time until an order is fulfilled. We can

then represent an order as 𝑜𝑖 = (𝑏𝑖 , 𝑐𝑖 , 𝑤𝑖). For this problem,

once an order is placed it remains as an attribute of the node

until the SDPC satisfies it or until a set amount of time, after

which it expires. Additionally, at any moment, a node can

host only one order, meaning the maximum number of orders

for a network at t is the network size n.

B. Decision-Making

At 𝑡 = 0 or once the SDPC has delivered an order, it then

evaluates its next order to satisfy. This is based on a
predetermined control algorithm which chooses a next target

𝑢 ∈ 𝑈, where 𝑈 represents the set of controls for all possible

locations that the SDPC can travel to. The control algorithm

considers the state of the system 𝑥 = 𝑥(𝑡), which contains

each order currently on the graph as well as the position of

the SDPC. A given control algorithm for the system

considers the state of the system as an input to identify a

control for the SDPC to adopt – that is, which node it should

travel to next – based on minimizing the episode’s accrued

cost. In a general form this is given as:

𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢  𝐽(𝑓(𝑥, 𝑢)), (1)

where 𝑓(𝑥, 𝑢) denotes the expected state of the system x at

the next step if control 𝑢 is executed and 𝐽(𝑓(𝑥, 𝑢))

represents a set cost under state 𝑓(𝑥, 𝑢) . An important

FIG. 1. A sample network with locations n = 5. Starred nodes (2,5)
represent locations with currently outstanding orders. Here the
SDPC is moving from location 3 to satisfy an order at location 2.

constraint placed on the model is that target nodes are

evaluated only when the SDPC is no longer satisfying an

order. This behavior is based on the simplifying assumption

that an SDPC can bake a single order at a time and prevents

the SDPC from changing its target location once it has made

its decision. For cases featuring complex control algorithms

operating on particularly large networks, this has the

advantage of reducing the processing power used by the

SDPC to more manageable amounts, as it would only be
running the algorithm once per completed delivery as

opposed to continually.

C. Traveling

The SDPC is represented by an additional node of degree

2 when delivering an order, its neighbors being its previous

and next node. As it travels from the previous node to the

next, the weights of these edges adjust to represent the

SDPC’s real-world distance from each respective location.

Furthermore, when idle the SDPC’s spatial location of being

“at” the location is represented by a weight 0 for its edge. If

the SDPC arrives at a location before its travel time has
reached b, it will rest at the node until sufficient time has

elapsed and it can satisfy the order. Finally, if the target order

happens to be placed at a location where the SDPC is already

resting, it will proceed to wait at that location for the duration

of b – as if the SDPC’s travel time to the location was 0.

If the shortest path between the current node and the next

node includes an intermediate point, the SDPC will consider

the intermediate node as one to travel to, but not as one which

has an order – this means that the SDPC passing through an

intermediate node will not resolve any order there, should

one exist.

 UCSB RMP
OPTIMIZING SELF-DRIVING PIZZA CARS AUG 2019

III. ALGORITHMS

A. Overview and Greedy Algorithms

Given that the goal of our control algorithm is to minimize

the total cost 𝐽 of the system and its controls over the entirety

of the episode, two outstanding questions arise from formula

(1) in section II, subsection B: How do we determine what

system properties to value for our cost, and how do we

evaluate the complete function J so as to find its optimal

value?

The first of these questions is open to a number of potential

answers, the general goal of each being to maximize the real-

world profit an SDPC. For the purposes of our research, we

explore three factors in particular: minimizing the distance

traveled by the SDPC, minimizing the wait time for an order,
and maximizing revenue.

Regarding the question of calculating the optimal value for

𝐽, we can first explore a brute-force approach: For a complete

iteration of the simulation, or episode, of 𝑡 timesteps, one

may consider the following formula:

𝐽𝑡𝑜𝑡𝑎𝑙 =∑𝛼𝑡

𝑡

𝑡=1

⋅ 𝐽(𝑥𝑡) (2)

where 𝛼 is a discount factor between 0 and 1. This amounts

to the SDPC evaluating the cost at each and every state, then

adding those together while discounting the value of later

states to find the total cost of the episode.

While this approach would in principle provide an optimal

policy and thus lead us to the true global minimum of the

cost function, at high time complexity it is for too
computationally intensive for an SDPC to solve at any

realistic network size and number of timesteps. With brute-

force ruled out, we must turn to alternative methods to

approximate the value of 𝐽 more efficiently. Among these,

two potential approaches are greedy and TD algorithms.

The greedy approach to estimating 𝐽 only considers the

immediate costs associated with transitioning to the next

state. It can thus be said that for the cost 𝐺 of state 𝑥 and

control  𝑢 that 𝐺𝑔𝑟𝑒𝑒𝑑𝑦(𝑥, 𝑢) = 𝑔(𝑥, 𝑢), where 𝑔(𝑥, 𝑢)

represents the up-front cost associated with traveling from 𝑥

to the next node dictated by 𝑢. For both our greedy and TD

algorithms we define this 𝑔(𝑥, 𝑢) to prioritize one of our

three target metrics: minimizing distance, minimizing wait,

and maximizing revenue.

B. TD(λ)

The alternative approach we pursue is a variant of the TD
algorithm called TD(λ) (algorithm 1) which looks beyond

the immediate cost of the control, improving its own

performance over time to better approximate the true cost

function 𝐽. To do so, we consider a select number of features

which are dependent on state 𝑥. For our research, these

features are: the maximum wait time among all outstanding

orders, the average wait time of all outstanding orders, the

maximum price among the orders, the average price of the

orders, and the average distance from the SDPC to every

node. These are stored in a feature vector 𝜙(𝑥). If we assign

these each of these features a designated weight 𝑟𝑖, we are

then able to approximate 𝐽 at any state as:

𝐽(𝑥, 𝑟) = ∑𝑟𝑖

𝑖

𝑖=1

⋅ 𝜙𝑖(𝑥) (3)

From here, the algorithm begins the process of deciding its

next control and updating weights 𝑟 for the next timestep.

For every element 𝑢 of the set of allowable controls 𝑈(𝑥) at

state 𝑥 , the SDPC evaluates a cost 𝐺(𝑥, 𝑢𝑖). This cost is

expressed as the sum of the immediate cost associated with

implementing control 𝑢𝑖 – much like we see in the greedy

algorithm – but with the additional addend of the expected

cost of the next state times a constant discount factor 𝛼 ∈
[0,1). A control 𝑢 is then drawn from the normalized Gibbs

distribution of 𝐺, with tuning factor 𝑇 > 0, and the next state

𝑥+  is defined as the expected value of 𝑥 after control 𝑢 is

implemented. Following this, the temporal difference 𝛿𝑡 is
calculated as the difference between 𝐺 and 𝐽. The vector 𝑧 is

then calculated as 𝑧𝑡 = 𝜙(𝑥+) + 𝛼 ⋅ 𝜆 ⋅ 𝑧𝑡−1 , 𝜆 being

another value between 0 and 1. This finally results in the

updated weights being evaluated as 𝑟𝑡+1 = 𝑟𝑡 +
1

𝑡
⋅ 𝛿𝑡 ⋅ 𝑧𝑡 .

This algorithm is then repeated for every timestep until the

episode is completed. Thus the TD algorithm is able to

improve its performance for a designated metric over the

 UCSB RMP
OPTIMIZING SELF-DRIVING PIZZA CARS AUG 2019

duration of the episode by reactively recalculating the

weights it assigns to each feature.

IV. IMPLEMENTATION AND DISCUSSION

Our model operates on a graph of size 5, not including the

SDPC itself. At any given node, orders appear with

probabilities ranging from 0.5% to 1.0% per timestep,

dependent on the node. Order prices are drawn from a normal

distribution with means ranging from 16 to 20, again

dependent on the node (see table 1 for more detailed

information). For the TD learning algorithms, we set 𝛼 =
 0.5, 𝜆 =  0.9, and 𝑇  =  10. Initial weights 𝑟 all begin at 1,

and each episode lasted 35,000 time increments.
For our implementation, we tested both a greedy algorithm

and a TD algorithm that prioritized each of three system

properties: minimizing selected distance, maximizing

selected prices, and maximizing selected wait times. We then

gathered efficiency data for these based on three primary

metrics: total accrued revenue, distance traveled per order,

and average wait time per order. Complete results are

displayed in table 1.

On the metric of total revenue, the SDPC operating with the

goal of maximizing price per order on a TD framework

outperformed the rest. This is expected as that program is
designed to accrue as much value as possible per order, while

also being able to make a move with lower price so as to

maximize future returns. Performing second-best is the

greedy algorithm minimizing distance: as the SDPC here is

spending less time travelling, it is able to gain more revenue

through the sheer satisfying of more orders. Finally, the mild

performance of the greedy max price algorithm can be

explained by recognizing that always targeting the highest

price order neglects the opportunity to satisfy more orders in

the same time for a higher total income.

For the metric of average distance travelled, the SDPC

performed best under the TD algorithm designed to
minimize distance – again consistent with predictions that

the TD algorithm would be more effective. This

outperformed the other algorithms by a margin of 7 points.

The metric of average wait time presents a less intuitive

result. While TD algorithms outperformed their greedy

counterparts for all priorities, the worst performing program

was that which seeks to satisfy the maximum wait using

greedy techniques. The TD algorithm of the same kind

performed marginally better, yet it still failed to outperform

the other methods in a meaningful way. Given that the wait

algorithms did not perform optimally for any other metric
either, we are drawn to the conclusion that wait time is not

an ideal metric for which to optimize an SDPC. The low wait

associated with the TD min distance algorithm indicates that

it satisfied orders effectively, in a brief amount of time.

TABLE 1. Delivery efficiency performances for each of the control
algorithms tested. For revenue, higher values denote better
performance, while for distance and wait times lower values are
considered better. Revenues are truncated to two decimal places to
emulate real-world price values, and distances and wait times are
truncated to three decimals for display convenience.

Ultimately, the consistently better performance of the TD
algorithms compared to their greedy counterpart –

outperforming them in 7 of 9 cases – indicates that they lend

themselves well to optimizing delivery performances on a

given network. With regards to prioritization of variables, no

algorithm optimizes performance on all metrics, but the low

wait time and low distance of the TD min distance algorithm

indicate that it is the strongest for delivery efficiency, while

the high revenue of the TD max price algorithm indicates its

strength in maximizing profit.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a method with which to model

a single-car autonomous delivery system, as well as

numerous greedy and machine learning algorithms to

optimize its performance. In running the simulation and

measuring efficiencies for each algorithm, we showed that

TD algorithms consistently outperformed greedy algorithms

when prioritizing the same system property. In future work,

we seek to expose this model to a more robust set of factors

that would be seen in a real-world environment such as
baking multiple orders at a time and guaranteed delivery

times. Furthermore, we seek to expand the model to a fleet

of vehicles and eventually determine a single control

algorithm of optimal performance across all tested metrics.

ACKNOWLEDGEMENTS

This research was conducted under the UC Santa Barbara

Department of Electrical and Computer Engineering. The

authors would like to thank them and a number of individuals
for their contributions to the research process: Dr. Lina Kim,

our program director, provided a number of invaluable

resources to guide our research, and both Dr. Michael

Hughes and A S M Iftekhar, our TA, gave us specialized

feedback to fine tune our research and its presentation.

Finally, our lab mates Adit Shah and Siddharth Ganesan

were valuable partners in navigating the research process.

Without these people’s support, this report would not have

been possible.

Algorithm
Mean

Distance
Total

Revenue
Mean
Wait

Greedy, Min Distance 22.166 10268.53 68.734

TD, Min Distance 14.780 8872.62 55.395

Greedy, Max Price 22.982 9487.66 68.236

TD, Max Price 20.540 10635.93 61.180

Greedy, Max Wait 22.046 8371.60 73.255

TD, Max Wait 21.281 8937.04 67.463

 UCSB RMP
OPTIMIZING SELF-DRIVING PIZZA CARS AUG 2019

REFERENCES

[1] “Pizza delivery: consumer spending US 2018,” Statista.

[Online]. Available: https://www.statista.com/statistics/

259168/pizza-delivery-consumer-spending-in-the-us/.

[Accessed: 14-Jul-2019].
[2] P. Holley, “Domino’s will start delivering pizzas via an

autonomous robot this fall,” Washington Post, 17-Jun-

2019.

[3] “Order Delicious Pizza and Have it Delivered Zume

Fast,” Zume Pizza, Order Online. [Online]. Available:

https://zumepizza.com/. [Accessed: 14-Jul-2019].

[4] M. Han, P. Senellart, S. Bressan, and H. Wu, “Routing

an Autonomous Taxi with Reinforcement Learning,” in

Proceedings of the 25th ACM International on

Conference on Information and Knowledge

Management - CIKM ’16, Indianapolis, Indiana, USA,

2016, pp. 2421–2424.
[5] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-Finder:

A Recommender System for Finding Passengers and

Vacant Taxis,” IEEE Trans. Knowl. Data Eng., vol. 25,

no. 10, pp. 2390–2403, Oct. 2013.

[6] M. Pavone, “19 Autonomous Mobility-on-Demand

Systems for Future Urban Mobility,” p. 16.

[7] D. Bertsekas, Dynamic Programming and Optimal

Control, 3rd ed., vol. 1. Athena Scientific, 2005.

[8] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe,

Multi-Agent, Reinforcement Learning for Autonomous

Driving,” arXiv:1610.03295 [cs, stat], Oct. 2016.
[9] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep

Reinforcement Learning framework for Autonomous

Driving,” Electronic Imaging, vol. 2017, no. 19, pp. 70–

76, Jan. 2017.

 [10] K. Treleaven, M. Pavone, and E. Frazzoli,

“Asymptotically Optimal Algorithms for Pickup and

Delivery Problems with Application to Large-Scale

Transportation Systems,” p. 36, 2012.

