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Recent years have seen an increase in attention to autonomous vehicles, especially in the field of autonomous 

delivery using self-driving trucks and cars. While the creation of such autonomous vehicles has become fairly 

straight-forward, a far less explored question is what constitutes an ideal algorithm to determine delivery 

routes. One unique case of such delivery systems is that of self-driving pizza cars (SDPCs), wherein a vehicle 
must consider incoming orders, prices, wait times, and other factors, all while baking orders as the car travels. 

In this paper we pose a computer model to simulate an SDPC on a network of locations. We then develop 

both greedy and temporal difference (TD) control algorithms, prioritizing various properties related to 

customer experience and efficiency. Finally, we compare the delivery efficiencies of each algorithm. 

Ultimately, TD algorithms consistently outperformed their greedy counterparts, while there was no 

conclusive control which applied optimally over all metrics. 
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I. INTRODUCTION 

Autonomous vehicles have become an increasingly 

popular and feasible solution to modernizing public 

transportation networks and delivery systems. One unique 

and burgeoning application of this technology is in pizza 

delivery – a $9.8 billion-dollar industry in the US in 2018 

[1]. Established companies such as Domino’s and Pizza Hut 

have partnered with automakers (Ford and Toyota, 

respectively) to automate their delivery infrastructures [2], 

following the lead of innovative startups such as Mountain 

View based Zume Pizza [3]. 

This problem considers a novel idea for a self-driving 
pizza car (SDPC) which functions much like a self-driving 

taxi system, but with a specialized twist. The SDPC operates 

fully autonomously to deliver pizzas from location to 

location. However, it differentiates itself from other 

autonomous delivery systems in that it also bakes pizzas 

fully in-car as it drives. Such a device would be 

advantageous to pizza delivery companies as it eliminates 

the need for a human driver while also reducing wait times 

per order, as the SDPC would not have to return to the brick-

and-mortar store to pick up new deliveries.  

 With this in mind, the SDPC behaves under a number of 
operating constraints: at any given increment of time, it first 

receives a series of random orders, then deliberates the 

optimal path to satisfy them, and finally bakes a pizza as it 

drives to the order location, one pizza at a time. This final 

constraint adds an additional time factor which the control 

algorithm must consider when deciding its optimal path (one 

which we also see in industries like that of perishable goods 

and autonomous taxis).  

Ultimately, creating an effective decision-making 

algorithm for such an SDPC has proven difficult. The current 

state of the literature on routing problems leans heavily 

towards greedy control algorithms, often leveraging vast 

repositories of data to calculate trends for optimal car 
behavior [4, 5]. However, in the case of a fleet of SDPCs (or 

various other autonomous delivery networks), there is a 

noted lack of data available due to the fact that the 

technology has never been implemented before.  In light of 

this, the need for a more dynamic control algorithm becomes 

apparent [6]. 

Temporal difference (TD) learning is an alternative 

approach to control algorithms for systems wherein an object 

makes decisions in accordance with an approximated cost 

function generated from the current and all past states of the 

system [7]. This is a heavily researched field; in the past it 
has been applied to self-driving cars from the perspective of 

decision making for driving techniques [8, 9]. Additionally, 

[4] provides an exploration of how RL can be used to manage 

off-duty autonomous mobility on demand (AMoD) cars to 

navigate to optimal pickup locations. Currently, however, 

there is a marked lack of research into the applications of TD 

learning in the on-duty elements of an autonomous delivery 

system, where the algorithm would decide which in which 

order to satisfy a number of randomly generated orders. 

Our solution to the problems presented above is to use RL 

to optimize the SDPC’s behavior for a network with 

stochastically updating orders. By using temporal 

difference-lambda (TD(λ)) learning to dynamically adjust 

the algorithm, the SDPC optimizes its efficiency for the 

particular network, increasing its performance over time by 

adjusting its control algorithm with each increment.  
We begin by modelling a single SDPC in a network with 

stochastic orders and measuring the delivery efficiency of 

the model while using a series of greedy control algorithms. 

This serves as a baseline from which we develop TD control 



 UCSB RMP 
OPTIMIZING SELF-DRIVING PIZZA CARS  AUG 2019 

 

algorithms for the same variety of metrics and test their 

efficiencies before comparing the greedy and TD results. 

This allows us to investigate approaches to SDPC routing 

that considerably improve the delivery efficiency of the 

system over the course of an episode when compared to 
greedy approaches. 

 

II. PROBLEM MODEL 

A. Graph Framework and Stochastic Orders 

We begin by developing a model which includes the 

SDPC and n delivery locations as a framework for our 

various control algorithms. Here, we represent locations as 

nodes on an undirected graph H (see FIG. 1). The edges of 

H represent roads linking two different locations, with 
weights corresponding to a fixed travel time, or distance, 

between the locations. The SDPC is denoted on the graph by 

an additional node on H, with edges that continually update 

as the system changes states. This process is described in 

more depth in section II, subsection C.  

At any given point in time, node i receives an order with 

probability pi provided there is not an order already pending 

there. Such an order has three properties: bake time b and 

price c, where b and c are random variables that do not 

change until the order has been satisfied, and a continually 

updating wait time w, which begins at 0 and increases 

incrementally with time until an order is fulfilled. We can 

then represent an order as 𝑜𝑖 = (𝑏𝑖 , 𝑐𝑖 , 𝑤𝑖). For this problem, 

once an order is placed it remains as an attribute of the node 

until the SDPC satisfies it or until a set amount of time, after 

which it expires. Additionally, at any moment, a node can 

host only one order, meaning the maximum number of orders 

for a network at t is the network size n. 

 

B. Decision-Making 

At 𝑡 = 0 or once the SDPC has delivered an order, it then 

evaluates its next order to satisfy. This is based on a 
predetermined control algorithm which chooses a next target 

𝑢 ∈ 𝑈, where 𝑈 represents the set of controls for all possible 

locations that the SDPC can travel to. The control algorithm 

considers the state of the system 𝑥 = 𝑥(𝑡), which contains 

each order currently on the graph as well as the position of 

the SDPC. A given control algorithm for the system 

considers the state of the system as an input to identify a 

control for the SDPC to adopt – that is, which node it should 

travel to next – based on minimizing the episode’s accrued 

cost. In a general form this is given as: 
 

 

 

 

 

 

 

𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢  𝐽(𝑓(𝑥, 𝑢)), (1) 
 

where 𝑓(𝑥, 𝑢) denotes the expected state of the system x at 

the next step if control 𝑢  is executed and 𝐽(𝑓(𝑥, 𝑢)) 

represents a set cost under state 𝑓(𝑥, 𝑢) . An important 

 
FIG. 1. A sample network with locations n = 5. Starred nodes (2,5) 
represent locations with currently outstanding orders. Here the 
SDPC is moving from location 3 to satisfy an order at location 2.  
 

constraint placed on the model is that target nodes are 

evaluated only when the SDPC is no longer satisfying an 

order. This behavior is based on the simplifying assumption  

that an SDPC can bake a single order at a time and prevents 

the SDPC from changing its target location once it has made 

its decision. For cases featuring complex control algorithms 

operating on particularly large networks, this has the 

advantage of reducing the processing power used by the 

SDPC to more manageable amounts, as it would only be 
running the algorithm once per completed delivery as 

opposed to continually. 

 

C. Traveling 

The SDPC is represented by an additional node of degree 

2 when delivering an order, its neighbors being its previous 

and next node. As it travels from the previous node to the 

next, the weights of these edges adjust to represent the 

SDPC’s real-world distance from each respective location. 

Furthermore, when idle the SDPC’s spatial location of being 

“at” the location is represented by a weight 0 for its edge. If 

the SDPC arrives at a location before its travel time has 
reached b, it will rest at the node until sufficient time has 

elapsed and it can satisfy the order. Finally, if the target order 

happens to be placed at a location where the SDPC is already 

resting, it will proceed to wait at that location for the duration 

of b – as if the SDPC’s travel time to the location was 0. 

If the shortest path between the current node and the next 

node includes an intermediate point, the SDPC will consider 

the intermediate node as one to travel to, but not as one which 

has an order – this means that the SDPC passing through an 

intermediate node will not resolve any order there, should 

one exist.  
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III. ALGORITHMS 

A. Overview and Greedy Algorithms 

Given that the goal of our control algorithm is to minimize 

the total cost 𝐽 of the system and its controls over the entirety 

of the episode, two outstanding questions arise from formula  

(1) in section II, subsection B: How do we determine what 

system properties to value for our cost, and how do we 

evaluate the complete function J so as to find its optimal 

value? 

The first of these questions is open to a number of potential 

answers, the general goal of each being to maximize the real-

world profit an SDPC. For the purposes of our research, we 

explore three factors in particular: minimizing the distance 

traveled by the SDPC, minimizing the wait time for an order, 
and maximizing revenue.  

Regarding the question of calculating the optimal value for 

𝐽, we can first explore a brute-force approach: For a complete 

iteration of the simulation, or episode, of 𝑡 timesteps, one 

may consider the following formula: 

 

𝐽𝑡𝑜𝑡𝑎𝑙 =∑𝛼𝑡

𝑡

𝑡=1

⋅ 𝐽(𝑥𝑡) (2) 

where 𝛼 is a discount factor between 0 and 1. This amounts 

to the SDPC evaluating the cost at each and every state, then 

adding those together while discounting the value of later 

states to find the total cost of the episode.  

While this approach would in principle provide an optimal 

policy and thus lead us to the true global minimum of the 

cost function, at high time complexity it is for too 
computationally intensive for an SDPC to solve at any 

realistic network size and number of timesteps. With brute-

force ruled out, we must turn to alternative methods to 

approximate the value of 𝐽 more efficiently. Among these, 

two potential approaches are greedy and TD algorithms. 

The greedy approach to estimating 𝐽  only considers the 

immediate costs associated with transitioning to the next 

state. It can thus be said that for the cost 𝐺 of state 𝑥 and 

control  𝑢  that 𝐺𝑔𝑟𝑒𝑒𝑑𝑦(𝑥, 𝑢) = 𝑔(𝑥, 𝑢),  where 𝑔(𝑥, 𝑢) 

represents the up-front cost associated with traveling from 𝑥 

to the next node dictated by 𝑢. For both our greedy and TD 

algorithms we define this 𝑔(𝑥, 𝑢)  to prioritize one of our 

three target metrics: minimizing distance, minimizing wait, 

and maximizing revenue. 

 

B. TD(λ)  

The alternative approach we pursue is a variant of the TD 
algorithm called TD(λ) (algorithm 1) which looks beyond 

the immediate cost of the control, improving its own 

performance over time to better approximate the true cost 

function 𝐽. To do so, we consider a select number of features 

which are dependent on state 𝑥. For our research, these  

 
 

features are: the maximum wait time among all outstanding 

orders, the average wait time of all outstanding orders, the 

maximum price among the orders, the average price of the 

orders, and the average distance from the SDPC to every 

node. These are stored in a feature vector 𝜙(𝑥). If we assign 

these each of these features a designated weight 𝑟𝑖, we are 

then able to approximate 𝐽 at any state as: 

 

𝐽(𝑥, 𝑟) = ∑𝑟𝑖

𝑖

𝑖=1

⋅ 𝜙𝑖(𝑥) (3) 

From here, the algorithm begins the process of deciding its 

next control and updating weights 𝑟 for the next timestep. 

For every element 𝑢 of the set of allowable controls 𝑈(𝑥) at 

state 𝑥 , the SDPC evaluates a cost 𝐺(𝑥, 𝑢𝑖). This cost is 

expressed as the sum of the immediate cost associated with 

implementing control 𝑢𝑖 – much like we see in the greedy 

algorithm – but with the additional addend of the expected 

cost of the next state times a constant discount factor 𝛼 ∈
[0,1). A control 𝑢 is then drawn from the normalized Gibbs 

distribution of 𝐺, with tuning factor 𝑇 > 0, and the next state 

𝑥+  is defined as the expected value of 𝑥 after control 𝑢 is 

implemented. Following this, the temporal difference 𝛿𝑡  is 
calculated as the difference between 𝐺 and 𝐽. The vector 𝑧 is 

then calculated as 𝑧𝑡 = 𝜙(𝑥+) + 𝛼 ⋅ 𝜆 ⋅ 𝑧𝑡−1 , 𝜆  being 

another value between 0 and 1. This finally results in the 

updated weights being evaluated as 𝑟𝑡+1 = 𝑟𝑡 +
1

𝑡
⋅ 𝛿𝑡 ⋅ 𝑧𝑡 . 

This algorithm is then repeated for every timestep until the 

episode is completed. Thus the TD algorithm is able to 

improve its performance for a designated metric over the 



 UCSB RMP 
OPTIMIZING SELF-DRIVING PIZZA CARS  AUG 2019 

 

duration of the episode by reactively recalculating the 

weights it assigns to each feature.  

 

IV. IMPLEMENTATION AND DISCUSSION 

Our model operates on a graph of size 5, not including the 

SDPC itself. At any given node, orders appear with 

probabilities ranging from 0.5% to 1.0% per timestep, 

dependent on the node. Order prices are drawn from a normal 

distribution with means ranging from 16 to 20, again 

dependent on the node (see table 1 for more detailed 

information). For the TD learning algorithms, we set 𝛼 =
 0.5, 𝜆 =  0.9, and 𝑇  =  10. Initial weights 𝑟 all begin at 1, 

and each episode lasted 35,000 time increments. 
For our implementation, we tested both a greedy algorithm 

and a TD algorithm that prioritized each of three system 

properties: minimizing selected distance, maximizing 

selected prices, and maximizing selected wait times. We then 

gathered efficiency data for these based on three primary 

metrics: total accrued revenue, distance traveled per order, 

and average wait time per order. Complete results are 

displayed in table 1.  

On the metric of total revenue, the SDPC operating with the 

goal of maximizing price per order on a TD framework 

outperformed the rest. This is expected as that program is 
designed to accrue as much value as possible per order, while 

also being able to make a move with lower price so as to 

maximize future returns. Performing second-best is the 

greedy algorithm minimizing distance: as the SDPC here is 

spending less time travelling, it is able to gain more revenue 

through the sheer satisfying of more orders. Finally, the mild 

performance of the greedy max price algorithm can be 

explained by recognizing that always targeting the highest 

price order neglects the opportunity to satisfy more orders in 

the same time for a higher total income. 

For the metric of average distance travelled, the SDPC 

performed best under the TD algorithm designed to 
minimize distance – again consistent with predictions that 

the TD algorithm would be more effective. This 

outperformed the other algorithms by a margin of 7 points. 

The metric of average wait time presents a less intuitive 

result. While TD algorithms outperformed their greedy 

counterparts for all priorities, the worst performing program 

was that which seeks to satisfy the maximum wait using 

greedy techniques. The TD algorithm of the same kind 

performed marginally better, yet it still failed to outperform 

the other methods in a meaningful way. Given that the wait 

algorithms did not perform optimally for any other metric 
either, we are drawn to the conclusion that wait time is not 

an ideal metric for which to optimize an SDPC. The low wait 

associated with the TD min distance algorithm indicates that 

it satisfied orders effectively, in a brief amount of time. 

TABLE 1. Delivery efficiency performances for each of the control 
algorithms tested. For revenue, higher values denote better 
performance, while for distance and wait times lower values are 
considered better. Revenues are truncated to two decimal places to 
emulate real-world price values, and distances and wait times are 
truncated to three decimals for display convenience. 
 

Ultimately, the consistently better performance of the TD 
algorithms compared to their greedy counterpart – 

outperforming them in 7 of 9 cases – indicates that they lend 

themselves well to optimizing delivery performances on a 

given network. With regards to prioritization of variables, no 

algorithm optimizes performance on all metrics, but the low 

wait time and low distance of the TD min distance algorithm 

indicate that it is the strongest for delivery efficiency, while 

the high revenue of the TD max price algorithm indicates its 

strength in maximizing profit. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we presented a method with which to model 

a single-car autonomous delivery system, as well as 

numerous greedy and machine learning algorithms to 

optimize its performance. In running the simulation and 

measuring efficiencies for each algorithm, we showed that 

TD algorithms consistently outperformed greedy algorithms 

when prioritizing the same system property. In future work, 

we seek to expose this model to a more robust set of factors 

that would be seen in a real-world environment such as 
baking multiple orders at a time and guaranteed delivery 

times. Furthermore, we seek to expand the model to a fleet 

of vehicles and eventually determine a single control 

algorithm of optimal performance across all tested metrics. 
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Algorithm 
Mean 

Distance 
Total 

Revenue 
Mean 
Wait 

Greedy, Min Distance 22.166 10268.53 68.734 

TD, Min Distance 14.780 8872.62 55.395 

Greedy, Max Price 22.982 9487.66 68.236 

TD, Max Price 20.540 10635.93 61.180 

Greedy, Max Wait 22.046 8371.60 73.255 

TD, Max Wait 21.281 8937.04 67.463 
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